
Moe Serifu Agent Documentation
Release 0.1

Moe Serifu Circle & Contributors

Sep 28, 2020

Contents:

1 Overview 1
1.1 . 1
1.2 Anime AI . 1
1.3 Exchangable Personality and Appearance . 2
1.4 Physical Representation . 3

2 Installation 5
2.1 Windows Installation . 5
2.2 Linux/MacOS Installation . 5

3 Getting Started 7
3.1 Up and running . 7

4 Configuration File 9
4.1 Configuration Values . 9
4.2 Example configuration . 11

5 Built-in Commands 13
5.1 Getting Help . 13
5.2 Echo . 13
5.3 Quit . 13

6 Extending MSA with Plugins 15

7 Architectural Overview 17
7.1 Built-in Modules . 17

8 Contributor Guide 19
8.1 Running from source . 19
8.2 Plugin Development . 19

9 Changelog 21
9.1 Version 1.0 . 21

10 API Reference 23
10.1 Subpackages . 23
10.2 Submodules . 25
10.3 msa.config module . 25

i

10.4 msa.var module . 26
10.5 Module contents . 26

11 Indices and tables 27

Python Module Index 29

Index 31

ii

CHAPTER 1

Overview

1.1 Build Status logo

Project Website Documentation

Moe Serifu Agent (MSA) is an event-driven personal assistant system that presents itself as existing in a particular
location (like a house or a smartphone) and performs various tasks as directed by the user.

At a high-level, this system provides an anime-themed character that exists in cyberspace. It runs around the location
it’s installed in and appears at the end-users’ beck and call in order to perform whatever services are needed, including
timed reminders, checking and reporting on the state of its location, conversation, and performing in an entertainment
role.

As an example, a user might tell the MSA to greet them when they return from work, or to wake them up in a
customized way in the mornings. With its plugin API, new sensors and interfaces can be added to allow the MSA to
interact with the world in just about any way the user desires.

1.2 Anime AI

The MSA project is inspired by various fictional artificial entities, such as the Virtual Intelligences from the Mass
Effect Series, the Persocoms from the Chobits series, the Tachikoma from the Ghost in the Shell series, and the
AnthroPCs from the Questionable Content webcomic. The primary goal of the project is to create a system that carries
out commands for the user and that gives the appearance of being an independent intelligent entity.

1

http://www.moeserifu.moe
https://docs.moeserifu.moe

Moe Serifu Agent Documentation, Release 0.1

The anime theme was chosen because the author believes that the demograph that consumes anime tends to have
a lower barrier to their willing suspension of disbelief in ascribing emotions to fictional characters than that of the
general population.

mascot-vsign

1.3 Exchangable Personality and Appearance

The MSA system at its core represents itself as an anime-themed character. An intelligent agent system is used to
determine how to accomplish goals set by the user, as well as to control the character’s state, including the appearance
of emotions and how to react to events. The AI is driven partially by a personality module, which can be exchanged in
order to make the character act differently. Different personality modules are created with different behaviors in mind;
each would fall under a different anime character archetype, such as tsundere, kuudere, yandere, deredere, etc.

An avatar of the character is presented to the end-user for interfacing with the system. This initial project narrows the
goal of the avatar system to exist purely in cyberspace; there is no physical device (such as a robotic assembly) that
the MSA can manipulate, although this functionality could certainly be added using the plugin system.

This MSA avatar can be interacted with using a variety of methods including voice recognition and via command-line
interface, and it is shown to the user as a 3D model or 2D character on whichever devices are included in an instance
of the system.

The specific details regarding what the avatar looks like visually, how it sounds, and how it demonstrates emotions are

2 Chapter 1. Overview

Moe Serifu Agent Documentation, Release 0.1

controlled by an avatar module within the MSA. This module can be exchanged with other such modules in order to
change the appearance of the avatar.

A personality module and avatar module are intended to be combined into a set and distributed as a complete ‘character
pack’, though there is nothing in the system design that would prevent the personality module of one pack from being
used with the avatar module of another.

1.4 Physical Representation

In a complete MSA installation, a device (such as a screen/monitor) is set up in each of the rooms that it is to be
interacted with. The MSA maintains a ‘room’ that the character resides in, and the character ‘travels’ between rooms
by its avatar exiting a device and entering another one in an adjacent physical room. In general, the avatar will only
travel between adjacent devices, e.g. if the system is set up such that device A is next to device B which is next to
device C, then in order to travel from device A to device C, the avatar will move from A to B, then B to C.

Additionally, the user may download an app that allows their mobile device to be used as an output device. In this
case, the avatar could travel directly to the user in order to interact with them. The MSA system would use a variety
of sensors in order to detect the physical location of the mobile device and track which other output devices it should
be considered adjacent to.

mascot-chibi

1.4. Physical Representation 3

Moe Serifu Agent Documentation, Release 0.1

4 Chapter 1. Overview

CHAPTER 2

Installation

2.1 Windows Installation

[STUB]

2.2 Linux/MacOS Installation

[STUB]

5

Moe Serifu Agent Documentation, Release 0.1

6 Chapter 2. Installation

CHAPTER 3

Getting Started

The goal of this getting started guide is to walk you through the basic usage of MSA.

Note: This guide assumes that you have already installed the moe-serifu-agent package, if not, please see the
Installation page.

Note: This guide will explain how to run MSA from the moe-serifu-agent package. To run from source see
Running From Source

3.1 Up and running

To start MSA run, moe-serifu-agent in a terminal. You will be presented with a prompt. Interacting with the
prompt is the most basic way to interact with MSA.

To find available commands type help e.g.

>> help
Available Commands:
echo: Echos provided text back through the terminal
quit: Shuts down the current Moe Serifu Agent instance
help: Prints available commands and information about command usage.

To read the help text for a specific command, type help [name of a command] e.g.

>> help echo
Help text for command 'echo':
Usage: 'echo [text]'
Options: No available options.
Description: Echos provided text back through the terminal

To exit at any time, press Ctrl+c or type quit.

Now that we have covered how to get up and running with MSA, here are a few more topics worth reading:

7

installation.html
contributor_guide.html#running-from-source

Moe Serifu Agent Documentation, Release 0.1

• Customizing your MSA: Covers setting up a configuration file that you can use to customize the behavior of
MSA.

• Built-in Commands: Describes each of the builtin commands and what you can do with them.

• Extending MSA with plugins: Adding additional functionality through MSA plugins.

8 Chapter 3. Getting Started

CHAPTER 4

Configuration File

The configuration file is the easiest way to begin configuring MSA to your liking. The configuration file os a JSON
file. JSON stands for JavaScript Object Notation, and is a common way of storing structured data. As tutorials on how
to write JSON are easily found, we will avoid going into specifics with how json works here. The most you need to
know is that JSON is a series of key -> value associations.

This guide will refer to various nested configuration values in the config file, in order to easily reference a given JSON
value we will use the following naming scheme: agent.name to refer to the "Masa-chan" value of {"agent":
{ "name": "Masa-Chan" }} easily.

4.1 Configuration Values

4.1.1 Agent

The agent section configures the behavior and appearance of the agent.

agent.name

The name MSA will refer to itself as.

Example:

{
"agent": {
"name": "Your humble servant"

}
}

agent.user_title

The name MSA will refer to the user as.

9

Moe Serifu Agent Documentation, Release 0.1

Example:

{
"agent": {
"user_title": "Supreme Leader"

}
}

4.1.2 Plugin Modules

The plugin modules section, allows a user to configure which third-party plugins to load when MSA starts. It should
be a list of plugin modules to load at startup.

Example:

{
"plugin_modules": [
"my_demo_plugin"

]
}

4.1.3 Module Config

The module config section is a mapping of module name to JSON object. The JSON object is configuration values
that will be passed to the module to modify its behavior.

Example:

{
"module_config": {
"my_demo_plugin": {

"my_demo_message": "hello world"
}

}
}

4.1.4 Logging

The logging section, allows you to configure how MSA will record information about how well it is running, It will
also record any errors that are encountered.

logging.global_log_level

Sets the global log level. Must be one of “error”, “warn”, “info”, or “debug”. The global log level defines how verbose
all modules will be with their logging.

Example:

{
"logging": {
"global_log_level": "info"

}
}

10 Chapter 4. Configuration File

Moe Serifu Agent Documentation, Release 0.1

logging.log_file_location

The file that the logging output is written to. Example:

{
"logging": {
"log_file_location": "my_custom_file.log"

}
}

logging.truncate_log_file

Toggles overwriting or truncating the log file when MSA starts up. If false log files will be preserved between runs.
Example:

{
"logging": {
"truncate_log_file": false

}
}

logging.granular_log_levels

A module to log level mapping that overrides the logging.global_log_level setting for that module. This
can be used to increase logging or suppress a module that is logging too much unneeded information. Log level values
must be one of “error”, “warn”, “info”, or “debug”.

Example:

{
"logging": {
"granular_log_levels": [
{ "namespace": "echo", "log_level": "debug"},
{ "namespace": "command_registry", "log_level": "error"}

]
}

}

4.2 Example configuration

{
"agent": {

"name": "Masa-chan",
"user_title": "Onee-chan"

},
"plugin_modules": [

],

"module_config": {

},

(continues on next page)

4.2. Example configuration 11

Moe Serifu Agent Documentation, Release 0.1

(continued from previous page)

"logging": {
"global_log_level": "info",
"log_file_location": "msa.log",
"truncate_log_file": false,
"granular_log_levels": [
{ "namespace": "echo", "log_level": "debug"},
{ "namespace": "command_registry", "log_level": "error"}

]
}

}

12 Chapter 4. Configuration File

CHAPTER 5

Built-in Commands

5.1 Getting Help

At any point a user can enter help into the prompt to get a list of available commands. To view help text for a specific
command type help [command name] where [command name] is the name of the command you wish to
know more about.

5.2 Echo

The echo command causes the MSA to repeat back to you what you enter. For example, entering echo hello
world will cause the MSA to say hello world.

5.3 Quit

Shuts down the MSA and exits.

13

Moe Serifu Agent Documentation, Release 0.1

14 Chapter 5. Built-in Commands

CHAPTER 6

Extending MSA with Plugins

[[STUB]]

15

Moe Serifu Agent Documentation, Release 0.1

16 Chapter 6. Extending MSA with Plugins

CHAPTER 7

Architectural Overview

Note: This section is very techy. If you are not interested or knowledgeable in programming or how the
internals of the MSA work, this section is likely not for you.

7.1 Built-in Modules

7.1.1 Command Registry

The Command Registry is the heart and soul of the command system. When a user enters text, and the TTY module
propagates a TextInputEvent, the Command Registry attempts to parse the input into an invoke keyword and
a list of parameters. If the first token in the input matches the invoke keyword of a registered command type, the
Command Registry will propagate a new event for the registered command type to handle.

The Command Registry also handles listening and displaying text for help queries.

7.1.2 Command

7.1.3 Echo

7.1.4 Time

The time module propogates a TimeEvent at the beginning of every minute.

7.1.5 TTY

The TTY module enable input and output from the terminal. The TTY modules input handler listsens to the TTY for
terminal input and generates a TextInputEvent for other modules to handle.

17

Moe Serifu Agent Documentation, Release 0.1

18 Chapter 7. Architectural Overview

CHAPTER 8

Contributor Guide

8.1 Running from source

1. Clone the repository git clone https://github.com/moe-serifu-circle/
moe-serifu-agent.git

2. Open a terminal and navigate to the location you cloned the repository to.

3. Run pipenv install and pipenv shell to install the python requirements and enter a virtual environ-
ment.

4. Run python -m msa to start the system. You should be greeted with the default prompt.

8.2 Plugin Development

[STUB]

19

Moe Serifu Agent Documentation, Release 0.1

20 Chapter 8. Contributor Guide

CHAPTER 9

Changelog

9.1 Version 1.0

Initial release.

21

Moe Serifu Agent Documentation, Release 0.1

22 Chapter 9. Changelog

CHAPTER 10

API Reference

10.1 Subpackages

10.1.1 msa.builtins package

Subpackages

msa.builtins.command package

Submodules

msa.builtins.command.events module

msa.builtins.command.handlers module

Module contents

msa.builtins.command_registry package

Submodules

msa.builtins.command_registry.events module

msa.builtins.command_registry.handlers module

Module contents

23

Moe Serifu Agent Documentation, Release 0.1

msa.builtins.echo package

Submodules

msa.builtins.echo.events module

msa.builtins.echo.handlers module

Module contents

msa.builtins.time package

Submodules

msa.builtins.time.events module

msa.builtins.time.handlers module

Module contents

msa.builtins.tty package

Submodules

msa.builtins.tty.events module

msa.builtins.tty.handlers module

msa.builtins.tty.prompt module

msa.builtins.tty.style module

Module contents

Module contents

10.1.2 msa.core package

Submodules

msa.core.config_manager module

msa.core.event module

msa.core.event_bus module

class msa.core.event_bus.EventBus(loop)
Bases: object

24 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

Moe Serifu Agent Documentation, Release 0.1

The event bus is responsible for tracking event queues and pushing new events into the event queues so that the
event handlers can wait until a new event is sent to them via their event queue.

create_event_queue()
Creates a new event queue. Each handler should receive its own event queue.

fire_event(new_event)
Fires an event to each event handler via its corresponding event queue.

Parameters new_event (msa.core.event.Event) – A subclass of msa.core.event.Event to propa-
gate to event handlers.

msa.core.event_handler module

msa.core.loader module

msa.core.loader.load_builtin_modules()
Loads builtin modules.

msa.core.loader.load_plugin_modules(plugin_module_names, mode)
Loads plugin modules as specified in the configuration file.

Parameters

• plugin_module_names (List[str]) – Plugin module names to load. Module names should
be fully qualified modules existing in msa.plugins.

• mode (msa.core.RunMode) – The mode the system is being run in.

msa.core.supervisor module

Module contents

10.2 Submodules

10.3 msa.config module

class msa.config.Config(config_file: str, sections: Dict[str, msa.config.Section])
Bases: object

A wrapper class for storing and accessing multiple sections

exception msa.config.ConfigError(sec: str, key: str, val: str, msg: str, index: int = 0)
Bases: Exception

A type of exception to be used when encountering invalid configuration settings

index()→ int

key()→ str

message()→ str

section()→ str

value()→ str

10.2. Submodules 25

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#Exception

Moe Serifu Agent Documentation, Release 0.1

class msa.config.Section(name: str)
Bases: object

Holds a group of keys, each key can have multiple or no values assigned

create_key(key: str)→ None

get_all(key: str)→ List[str]
Returns a list of all values within a given key

get_entries()→ List[str]
Returns a list of all existing keys, even if the keys are empty

has(key: str)→ bool

push(key: str, val: str)→ None
Adds a value to the end of a key, even if there are empty values

set(key: str, index: int, val: str)→ None

msa.config.load(filepath: str)→ msa.config.Config
Loads a configuration file into a Config object for use within the code

msa.config.save(config: msa.config.Config, filepath: str)→ None
Saves a Config object as a file to the provided file path

10.4 msa.var module

class msa.var.Expander
Bases: object

Holds variables for substitution in strings

expand(text: str)→ str
Replaces any variables within a string to their values if any, variables are preceded by $

get_value(var: str)→ str

register_protected(var: str, val: str)→ None

register_var(var: str)→ None

set_value(var: str, val: str)→ None

unregister_protected(var: str)→ None

unregister_var(var: str)→ None

10.5 Module contents

26 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

27

Moe Serifu Agent Documentation, Release 0.1

28 Chapter 11. Indices and tables

Python Module Index

m
msa, 26
msa.builtins, 24
msa.config, 25
msa.core.event_bus, 24
msa.core.loader, 25
msa.var, 26

29

Moe Serifu Agent Documentation, Release 0.1

30 Python Module Index

Index

C
Config (class in msa.config), 25
ConfigError, 25
create_event_queue()

(msa.core.event_bus.EventBus method),
25

create_key() (msa.config.Section method), 26

E
EventBus (class in msa.core.event_bus), 24
expand() (msa.var.Expander method), 26
Expander (class in msa.var), 26

F
fire_event() (msa.core.event_bus.EventBus

method), 25

G
get_all() (msa.config.Section method), 26
get_entries() (msa.config.Section method), 26
get_value() (msa.var.Expander method), 26

H
has() (msa.config.Section method), 26

I
index() (msa.config.ConfigError method), 25

K
key() (msa.config.ConfigError method), 25

L
load() (in module msa.config), 26
load_builtin_modules() (in module

msa.core.loader), 25
load_plugin_modules() (in module

msa.core.loader), 25

M
message() (msa.config.ConfigError method), 25
msa (module), 26
msa.builtins (module), 24
msa.config (module), 25
msa.core.event_bus (module), 24
msa.core.loader (module), 25
msa.var (module), 26

P
push() (msa.config.Section method), 26

R
register_protected() (msa.var.Expander

method), 26
register_var() (msa.var.Expander method), 26

S
save() (in module msa.config), 26
Section (class in msa.config), 25
section() (msa.config.ConfigError method), 25
set() (msa.config.Section method), 26
set_value() (msa.var.Expander method), 26

U
unregister_protected() (msa.var.Expander

method), 26
unregister_var() (msa.var.Expander method), 26

V
value() (msa.config.ConfigError method), 25

31

	Overview
	
	Anime AI
	Exchangable Personality and Appearance
	Physical Representation

	Installation
	Windows Installation
	Linux/MacOS Installation

	Getting Started
	Up and running

	Configuration File
	Configuration Values
	Example configuration

	Built-in Commands
	Getting Help
	Echo
	Quit

	Extending MSA with Plugins
	Architectural Overview
	Built-in Modules

	Contributor Guide
	Running from source
	Plugin Development

	Changelog
	Version 1.0

	API Reference
	Subpackages
	Submodules
	msa.config module
	msa.var module
	Module contents

	Indices and tables
	Python Module Index
	Index

